An Application for the Management of
Standardized Parts in Steel Structural Design

R. Bronsart, A. Geitmann, M. Zimmermann

March 22, 2006

Abstract

Today, the design process in the maritime industries is characterized
by a complex interaction of many partners. Often, identical or similar
design tasks are performed by different partners working in parallel. A
significant amount of time is needed for information exchange and for
the coordination of design activities. Within the collaborative research
project Context Sensitive Structural Components (KonSenS) research is
carried out with the objective to develop IT-based methods for the man-
agement and application of standards for steel structural design. As a
result improved standardization which leads to the exploration of series
effects is achieved; manufacturing costs are reduced. In this paper a flex-
ible solution for the handling of standards is presented.

Access to an electronic catalog is provided to all partners concerned
via network connections. Following a single-source approach only one
standards database is needed for many different design projects. Config-
uration on a per-project basis allows for the tailoring of the standards to
the problem at hand. In addition a subset of the catalog information is
selected for certain design tasks or design contexts. These selection meth-
ods restrict the options available to the user; the probability of incorrect
design decisions is reduced. For common design tasks workflows for the
selection of optimal solutions are defined. Taking up ideas defined in the
standardized WIMC formats these workflows incorporate strength, man-
ufacturing and cost aspects. If required a computation module is used to
evaluate the performance of a solution. Using the standards database as
a result designers working on identical problems will find identical results;
standardization is improved.

1 Motivation

As part of the ongoing trend towards globalization many engineering pro-
cesses are outsourced to specialized partners. This behavior can also be
seen in the design process in the maritime industry. Here, in a complex
outsourcing scenario every partner involved has its

e own knowledge base,

e own design methods,
e own workflows.

A close and successful cooperation requires the use of evolved commu-
nication strategies. In ship design information about design procedures,
best practice recommendations and specifications about the problem at
hand need to be communicated. For this purpose standardization is used
as a tool to define guidelines for all engineers involved. Though, even
with elaborate documentation about standards etc. the interpretation of
the mostly paper-based information is left to the engineer. For identical
problems different solutions might be developed based on the background,
knowledge and interpretation of a person. A reduction of series effect and
thus an increase of cost can be registered. For approaches to a collabora-
tive design process and their application in the industry see [1]. With the
”KonSenS Electronic Catalog”, in the following called KonSenS, an appli-
cation server for the management of standardized parts based on [2, 3] is
developed. An IT-based solution allows the direct retrieval of up-to-date
information about applicable solutions by an engineer. With interfaces to
CAD-systems solutions are directly linked to the standards database in
the application server KonSenS. Methods for the application of workflow
based design wizards and for the handling of related documentation or
other information are also provided.

2 The System KonSenS

Not only is the system KonSenS a platform for the management of objects,
it combines parts management, documentation management and a rule
based computation system as well as unified workflows for assistance based
on all information stored. In the following chapters a detailed overview
over the architecture and the approach to data modelling used for data
storage is given.

2.1 Architecture

The main objective of the research project is the centralized storage of
all information for access by all partners involved in a certain project.
For this purpose a client—server—architecture was chosen. Thin clients are
used to access information objects on the server, i. e. the information is
stored on the server. Using the SOAP—protocol for communication clients
access the application logic like design wizards or rules via web services,
see section 2.4. By using a standardized communication protocol clients
can be implemented in many programming languages. The integrabil-
ity into third—party systems like CAD-systems is eased. For a sample
implementation see section 3.2.

2.2 Data Model

An efficient data model is a fundamental requirement for the fast access to
information objects and for the communication between server and client.

Also, flexibility is a key requirement for an efficient storage of all types
of information objects. Therefore, the data model uses three layers of
abstraction namely

1. the Abstract Model,
2. the Meta Model and
3. the Instance Model.

2.2.1 The Abstract Model

On a generic level the Abstract Model is used to define associations be-
tween any type of information object stored in the application server. The
structure of the Abstract Model is shown in figure 1 in UML notation.
The classes Entity and EntityGroup are super classes of all other classes

EntityGroup
+name
+parentEntityGroup
Entitylnformation
+author
+createTime
Entity
+name
+entityGroup
Comment Revision Link
+comment +tagID +url

Figure 1: The Abstract Model

used in the data model.

Entity: This class is parent class for all classes used to represent data
objects in the more specific lower layers of the data model, i. e. it
acts as a very abstract container class for the storage of information
about e. g. brackets. Entities have a name, a level unique iden-
tifier and one ore more associated EntityGroups. Associations to
EntityInformation and derived objects can also be stored.

EntityGroup: Entities are grouped by properties, e. g. referring pro-
files or yard names, using EntityGroup objects. EntityGroups have
a name, a level unique identifier and a parent group, which also is an
EntityGroup. Tree-like structures for the organization of standard-
ized solutions into a hierarchy can be defined using EntityGroups.
For each attribute that should be sortable like e. g. the thickness of
a plate an EntityGroup—based tree is defined.

EntityInformation: EntityInformation is the abstract superclass of all
objects used to store additional information for a standard object
like comments, revision tags, links etc. EntityInformation objects
have an author and a time stamp depicting the creation date.

Using these general classes a structure for search in the standards database
can be defined. Grouping of standard objects based on certain attributes is
possible, too. Any kind of object can be stored and indexed. Associations
to arbitrary pieces of information can be defined.

2.2.2 The Meta Model

<<extends EntityGroup=> <<extends EntityGroup>=
MetaObjectGroup MetaAttributeGroup

<<extends Entity==
MetaObject MetaAttribute
- +type
+attributes +metalttrGroup
+metaGroup

Figure 2: The Meta Model

Based on the Abstract Model the Meta Model, as shown in figure
2, is used to describe the structure of all standardized objects stored in
the database. Comparable to an object oriented programming language
objects and attributes can be defined. With such an approach types of
standardized parts are defined. For the Meta Model the following classes
are used:

MetaObjectGroup: This class is derived from the class EntityGroup.
It groups the MetaObjects which are associated with a MetaObject-
Group object. This structure is the base for browsing the database,
see chapter 2.4.

MetaObject: The class MetaObject, derived from Entity, represents the
description of a real world object like a bracket, a bulkhead or a
stiffener. Attributes are associated with it. Grouping is done using
MetaObjectGroup objects.

MetaAttributeGroup: Instances of this class are used for subscription
of attributes, i. e. to link certain attributes like e. g. the thickness
of a plate to a group named e. g. ”geometric attributes”. It is also
derived from EntityGroup.

MetaAttribute: MetaAttributes define the attributes for the Meta Model.
Therefore, a data type is given to define the type and range of at-
tribute values. Values for any attribute are stored at the Instance
Model level. MetaAttributes are associated to MetaObjects, so a
MetaObject "BCB” has a MetaAttribute "MAT”, which describes
the thickness of the bracket ”BCB”.

E. g. for brackets a shipyard defines, amongst others, the bracket types
BCB, BLK and BKB as standard types with a certain shape, material,
thickness and further information. For this purpose in the meta model
three different MetaObject instances are created; relevant attributes are
defined by MetaAttribute instances.

2.2.3 The Instance Model

While the Meta Model defines attributes etc. for a type of a standard-
ized object, at the level of the Instance Model values are assigned to
each object. So, instances have attribute values that are either calcu-
lated by the rule based computing system or saved as static values in the
database. Figure 3 shows the associations of all classes at the Instance

<<extends EntityGroup== Rule
InstanceGroup TrUle1D
+execute()

<<extends Entity=» <cextends Entity==
InstanceObject InstanceAttribute
+metalbject +metaAttribute

+value

+state

+inputParams: List

Figure 3: The Instance Model

Model. Classes are:

InstanceObject: An InstanceObject represents a standardized object,
e. g. a bracket "BCB 120” of bracket type BCB as shown in figure
4. Subclassed from Entity associations to a MetaObject and one or
more InstanceGroups and InstanceAttributes can be defined. This
means, structural information and attributes defined in a MetaOb-
ject instance are known. The InstanceGroup instances are used for
grouping of the object. The InstanceAttributes are holding values
for the attributes.

InstanceGroup: InstanceGroups are used for grouping of InstanceOb-
jects by properties defined similar to MetaObjectGroups. Subclassed
from EntityGroup tree-like structures can be defined. Compared
to MetaObjectGroups InstanceGroups allow the definition of more
than one association to InstanceObjects. That means, for each sort-
ing criteria, e.g. the name of the yard which uses the bracket or the
profile the bracket can be mounted on, there are two separate In-
stanceGroup instances both associated to the InstanceObject "BCB
120”. InstanceGroups are primary used for searching, see section
2.4.

InstanceAttribute: Attribute values are stored in InstanceAttribute
objects. Based on the different InstanceObject instances an asso-
ciated attribute (MetaAttribute) can have different values. As seen
on figure 4 the MetaAttribute "MAT”, describing the thickness of
a bracket, has two associated InstanceAttribute instances ”MAT =
8” and "MAT = 12”. These values are either static (as in the exam-
ple) - and thus stored in the database - or dynamic, i. e. they are
calculated by the rule module that is part of the application server.

Rule: This class is used as connector to the rule based computation sys-
tem. It is needed for the calculation of values for dynamic attributes.

BCB

MAT
A Meta Level

B

BCB 200
MAT = 12
A =420

B =380

Instance Level

Figure 4: Example of bracket objects

Figure 4 shows two ObjectInstances for a MetaObject named "BCB”, a
bracket type. This bracket ”BCB” has three MetaAttributes:

MAT: the thickness of the bracket,
A: the leg length of one side and
B: the leg length of the other side.

Also, two InstanceObject instances ”BCB 120” and ”"BCB 1407, repre-
senting the real brackets with their geometric parameters, are shown.

Instances of class InstanceAttribute are associated with "BCB120” and
”BCB140” for the storage of attribute values.

2.3 Navigation in the Data Model

For navigation within the data model two different methods are imple-
mented. Firstly, navigation in the structure defined by the group-type-
instance structure of the standards, i. e. browsing, is available. The
second alternative uses search to extract the relevant information and its
structure. Combining both methods is also possible.

2.3.1 Browsing

Browsing is the navigation through the Meta Model with associated in-
stances. In figure 5 it is shown on the left part. First, root nodes are
shown. In this example only one root node ”part” is presented. By select-
ing one of the root nodes, the related child nodes ”bracket” and ”cutout”
are retrieved from the standards database. These nodes are instances of
the MetaObjectGroup class. These objects also have child nodes, either
MetaObjectGroup or MetaObject instances. MetaObject instances, here
?BCB” and "KL”, are leaf nodes in the Meta Model tree, but they have
child nodes on the Instance Model level (BCB 120, BCB 140, KL 140) that
are of type InstanceObject. On this level, the end of the tree is reached,
that means, instances from InstanceObject are always leaf of the browsing
tree. Once the browsing tree leafs are reached, all associated attributes
with their values (A, B, MAT, NOTCH, ...) and presentations can be
read from the database. The information is presented by the client, as
shown in figure 6.

2.3.2 Searching

With browsing the hierarchical structure of the data model is used to
retrieve a structured representation of the standards database. Often, for
certain problems the engineer on the shipyard or in the design office needs
to retrieve only a subset of a group of instances. Also, for certain design
wizards the retrieval of standardized objects with certain values for some
parameters is required.

For this purpose search for InstanceObjects is based on the grouping
defined by instances of type InstanceGroup. Using the instances tree-
structured graphs are created where each tree represents a property of
searchable InstanceObject objects. The root nodes of a search tree are
called systematics. As an example on the right of figure 5 examples for
search trees are shown. E .g. using the systematics ” Yard” all standard
objects available for a given yard can be found. For a flexible definition of
queries for information retrieval a query language is supported. Omitting
basic definitions for comparators and parameter values the characteristics
of the query language defined in a simplified EBNF is as follows:

Query = SearchPath [’#’ Filter]
SearchPath = 2’ {ViewDefs} | ViewDef ’)’
ViewDefs = ’(’ [BindOperation]{ViewDefs} ’)’

BindOperation = ’|’ | &’ | * !’

ViewDef = ’(’Systematic {’,’ Group } ’)’
Systematic = ’S=’ String

Group = ’G=’ String

Filter = (> {FilterDefs} | FilterDef ’)’
FilterDefs = ’(’ [BindOperation] {FilterDefs} ’)’
FilterDef = Attribute Comparator Value

Using constructs based on this language flexible queries can be defined.

As a simple example the query

(&(S=part, G=bracket) (S=design, G=refprofile, G=FP))
#(mat < 12.0))

retrieves all standard objects of type (S=part, G=bracket), i. e. all
brackets, that can be assembled on flat bars (S=design, G=refprofile,
G=FP, G=200) and that have a plate thickness less than 12 mm (mat
< 12.0). The definition of more complex queries can be performed using
logical operators like AND, OR and NOT.

2.4 Communication

As mentioned above, the communication between server and clients is
based on the SOAP[5] protocol. SOAP is a lightweight XML-based mes-
saging protocol used to encode the information in Web service-Request
and -Response messages before sending them over a network. SOAP mes-
sages are independent of any operating system or protocol and may be
transported using a variety of Internet protocols, including SMTP, MIME
and HTTP. A SOAP message is modelled as Head-Body—Pattern. A
SOAP envelope acts like a container in so far as that it stores a message
header and a message body. The header has information for authorization,
routing etc. while the body contains the user data for the web service.

Because firewalls are normally used to protect the internal network of
shipyards etc. the more comfortable or more powerful communication pro-
tocols [4] for client—server—applications like Java RMI, CORBA or DCOM
are not used in the scenario described. These protocol, while offering more
advanced features like remote method invocation and passing of complex
objects require complex configuration if used across firewalls or proxies.

For browsing, search and more advanced features web services are pub-
lished using the Web service Description Language (WSDL) [6] and are
used by client applications to access the data and application logic of
the application server KonSenS. With such a thin—client based approach
enhancements to the capabilities of the system or bug fixes to the applica-
tion logic can be deployed often without the complex and time-consuming
need to update all clients.

3 Management of Standardized Parts

In the previous chapter a highly configurable system for the management
of standardized parts was introduced. For each field of application the

data model to use must be defined, i. e. types with the corresponding
attributes and related instances must be given.

3.1 The KonSenS Model

Instance Level

Meta Level

BCB 120

refprofile

D MetaObjectGroup . D InstanceGroup

InstanceObject

Figure 5: Sample from the KonSenS Data Model

Figure 5 shows a part of the data model used for the application in the
steel structural design process. Shown are three ObjectInstances "BCB
1207, "BCB 140” and "KL 140”. To the left of these objects the corre-
sponding Meta Model is shown. On the right side systematics used for
searching are presented. Here, the objects can be grouped by:

e the yards, which use the brackets and

e the referring profiles, in this case bulb profiles with 120 and 140 mm
height.

3.1.1 The KonSenS Meta Model

As seen in the chapter above, the Meta Model defines the main syntax
and semantics of all objects used. For the usage in steel structural design
the following MetaObjects and -Groups are defined:

MetaGroups: These objects are used for browsing the tree to InstanceOb-
jects, i. e. they define a very general structure for all standardized
parts. The following groups are defined:

Part: Parts are main structures used in steel structural design.
These are solid structures. Currently, the following parts are
implemented as child groups:

e brackets,
e clips.

Feature: Features are geometric details of parts like holes or cutouts,
i. e. these are objects that modify the geometry of existing
parts. As an example cutouts are currently implemented as
children of features.

MetaObjects: For steel structural design MetaObjects are used to de-
fine parts used. These are stored as child nodes in the Meta Model
tree. In figure 5 the nodes "BCB” and ”KL” represent MetaObjects.

The KonSenS Meta Model is defined by a XML-file. As an example the
following excerpt of a definition file shows the definition of a MetaObject
called "BCB”, a certain type of bracket.

<metastructure>

<attributegroups>
<attributegroup name="geometry">
<attribute name="A" type="INT"/>

<attribute name="OFF" type="FLOAT"/>
</attributegroup>

<attributegroup name="common">
<attribute name="name" type="STRING"/>
</attributegroup>

</attributegroups>
<objectgroups>
<objectgroup name="part">
<objectgroup name="bracket">
<object id="bcb">
<ref_presentations>
<presentation_ref type="TRIBON"/>
<presentation_ref type="IMAGE"/>
</ref_presentations>
<ref_attributes>
<attribute_ref name="name"/>
<attribute_ref name="A"/>
<attribute_ref name="MAT"/>
<attribute_ref name="NOT"/>
<attribute_ref name="NOA"/>
<attribute_ref name="OFF"/>
</ref_attributes>
</object>
</objectgroup>
</objectgroup>
<objectgroup name="feature"/>

</objectgroups>

10

</metastructure>

The MetaObject shown has several attributes with names based on the
Tribon syntax. As seen, the MetaObject "BCB” is a child node from the
MetaGroup ”bracket”, which will be a child of ”part”.

In the example two presentations are defined. One is used for the
integration in Tribon, the other one is an associated image. With multiple
representations a single source approach can be used. 1. e. one common
data set is used where for each target system - this can be a CAD-system,
for visualization purposes etc. - only the relevant attributes are shown.

At present 35 MetaObjects, i. e. 35 different types of standardized
objects, are stored in the database.

3.1.2 The KonSenS Instance Model

The Instance Model stores all InstanceObject instances of the formerly de-
scribed MetaObject instances. Within the collaborative research project
KonSenS information about standardized parts is delivered by the project
partners, three major shipyards in Germany. In table 1 an overview over
the number of different parts managed is given.

’ MetaObject Names \ Number of Instances

brackets 626
clips 177
cutouts 341

Table 1: Number of standardized parts in KonSenS

Similar to the Meta Model instances are also defined in an XML-File.
Administrators is given the option to automatically generate Spreadsheet-
Files from this description that can then be distributed to the engineers
for data entry. Completed spreadsheets are imported into the system.
Changes to the data model are possible, i. e. round-tripping is supported.

3.2 Clients

Within the research project two clients are implemented as prototypes.
These are used for demonstration purposes. Both are implemented in
Python; the pyQT framework is used for visualization and to generate
the user interface.

Standalone Client: This client is used as named, i. e. it provides an
interface to the standardized parts and related information stored in
the standards database. By browsing the MetaGroup tree all parts
can be accessed. The client is also used as front end for the document
management system.

Tribon integrated client: For the usage in steel structural design this
client is integrated in the CAD-system Tribon using the Vitesse

11

Eile Compenents Admin Settings Windows Help

L=}
Parts Info - Parameters:

[A 2R
N val =]
TS5 (38) =l e e
f o [a 200
£ BCB 120 S
= 1 _|tribon BCB
'\ BCE 140 o ore 5
£ BCB 160 F—
3 |mar 8
£ 8CB 180 —
4_|NoA KS10
£ BCB 200 =
5 |woT R35#VU40FISHKS 10
£ BCB 220 -
6 [name BCB 140
) BCB 240 —
gt = |z
12|
Z | [s
| |10
1
IMAGE EREE
13
14
|24 | =l

Selectionwizard | DesignGuide | Rules | Documentation | Comments

Comment =
no comments

connected | [4

Figure 6: Screenshot of the Standalone Client

application programming framework. Basic workflows like the stan-
dards conformant construction of brackets and cutouts are imple-
mented. For this purpose the structural model of the CAD-system
is evaluated; possible solutions for a chosen problem are retrieved us-
ing search and systematics. For a design task like the definition of a
bracket attribute values are entered automatically as far as possible
thus reducing the number of user inputs required.

Due to the open design and the consolidation of the complete application
logic into the server the development of additional clients that integrate
CAD-systems or further applications into the system is possible.

4 Summary and Outlook

A central repository for standardized parts allows for instant up-to-date
access for all partners working on a certain project. A single source ap-
proach reduces the time needed to manage and maintain multiple stan-
dards concurrently. With the integration of the standards database into
CAD-systems the time needed for certain design tasks and the probability
of design errors can be reduced.

Currently, the system KonSenS is a first prototype focused on storage
and retrieval of standardized parts. It is a highly configurable and flexible
system. By using the data model described, engineers have a unique data
source for the steel structural design process. The access to additional
information using EntityInformation derived classes allows for a further
consolidation and a tighter integration of all relevant pieces of information.

Further work is currently carried out on the closer integration of a

12

rule-based computation system for the dynamic evaluation of parameters
or conditions. Advanced workflows for a guided wizard-based design are
developed.

5 Acknowledgement

The work presented in this paper is supported by the German Federal
Ministry of Education, Science, Research and Technology under grant
03SX163D. The authors acknowledge the valuable discussions with the
partners of the project Konstruktionsstandards fr schiffbauliche Struk-
turen zum Einsatz in CAD-Systemen, KonSensS.

References
[1] Hyeong—cheol Kim, et al., Introduction to DSM Hull Modelling
System ”COSMOS” based on TRIBON M3, ICASS 2005

[2] M. Zimmermann, R.Bronsart, K. Stenzel, Knowledge Based En-
gineering Methods for Ship Structural Design, ICASS 2005

[3] R. Bronsart, M. Zimmermann, Knowledge Modelling in Ship
Design using Semantic Web Techniques, Compit05

[4] Young—Soon Yang, A Study on the Web—based Distributed De-
sign Application in the Preliminary Ship Design, ICASS 2005

[5] SOAP Spec, http://www.w3.org/TR/SOAP
[6] Web Services, http://www.w3.org/2002/ws

13

