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ABSTRACT

For detailed ship structural design standardization is one means to ensure a consistent build quality. Cost  
reductions due to the exploration of series effects can be achieved.  With a knowledge based approach  
standards can be defined precisely and machine interpretable. Support for routine is provided..  Using a 
modular approach a solution for the semi-automatic design of standardized systems for ship structural  
design is presented. The design context, i.e. the effect of external design parameters, is defined. Algorithms  
for the automatic application of knowledge about standards are presented. Solutions for the evaluation of  
design intent and design context are developed. Using a bottom-up approach individual design assistants 
are  assembled  and  allow the  flexible  design of  complex  structural  members  like  complete  floor  plate  
structures. The advantages of a knowledge enhanced product model for design changes are presented. It is  
shown that automatic validation can be applied to such a product model hence ensuring consistency and  
supporting quality management as well as reducing the probability of design errors. 
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INTRODUCTION

The  shipbuilding  industry  is  facing  a  highly  competitive  market  that  makes  high  demands  regarding  product  quality, 
performance and price. For detailed ship structural design standardization is one means to ensure a consistent build quality. 
Cost reductions due to the exploration of series effects can be achieved. 

Today, standards for detailed design are mostly defined and distributed as paper based catalogs; engineers are responsible to 
understand and adhere to these standards. As a result, for a given design solution design assumptions and decisions are not 
stated explicitly in the product model, yet are relevant for following design activities. 

With a knowledge-based approach standards can be defined precisely and machine interpretable. An automatic application of 
these standards under the supervision and control of an engineer is made feasible, thus providing support for routine tasks and 
helping the engineer to concentrate on innovative aspects of the design process.. From a standpoint of configuration design 
algorithms for the automatic application of knowledge about standards can be applied to formulate design activities relevant 
for a standardized design solution. Automatic validation can be applied to such a product model hence ensuring consistency 
and supporting quality management as well as reducing the probability of design errors. Using a modular approach a solution 
for the semi-automatic design of standardized systems for ship structural design can be developed

DESIGN PROCESS AND THE ROLE OF STANDARDIZATION

As shown in Figure 1 the detailed design phase influences the total costs significantly. To reduce costs the main contractor, 
mostly the shipyard building the vessel, defines a set of regulations and best practice recommendations, the so called design 
standards.  These  standards  are  highly  optimized  to  increase  the  productivity  during  manufacturing  and  to  satisfy  all 
requirements regarding strength, fatigue, etc at the same time. 

Focusing on ship structural design, the initial design phase is used to adapt existing standards and to optimize these standards 
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to manufacturing capabilities and applicable regulations taking experience from previous projects as well as contractor’s 
requirements  into account.  During detailed design these standards  are then applied by the engineer  to design the vessel 
according to the rules defined in the standards. 

Applying design standards the number of different solutions to similar design problems in a vessel or in a series of vessels 
can be reduced. With these series effects manufacturing costs can be improved. The workers on the shop floor are more 
familiar  with the reduced  number of  solutions,  leading to  a  decrease  in  labor time needed  and at  the same time to an 
improvement in manufacturing though product quality (Zimmermann et. al 2005). 
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Figure 1: Effect of process and total design time on cost

To reduce  design time similar tasks concerning independent  aspects  of  the design of a  vessel  are deployed  to different 
partners. For example the design of all steel structural parts of the bow section is done by one design agent; the design of the 
aft section is done by another design agent or at the shipyard. Design offices, either at the shipyard or at design agents, are  
often working on many projects at the same time. This requires that the individual engineer

• has to work in different design contexts at the same time
• and has to get familiar with the recommendations and requirements of the contractor for each project.

For new projects engineers are required to get familiar and productive with the standards and regulations supplied within a 
limited timeframe. Working on different projects also requires a constant change of the standards used; the probability of 
using incorrect regulations or misinterpretation is increased leading to increased costs for necessary changes later on. 

Standards offer a means to define solutions to similar problems. These standards are used by engineers at the shipyard and 
design offices to design a vessel in a way that is best for the manufacturing capabilities at the construction site. As a result 
manufacturing costs are reduced and the build quality is improved. If common standard parts are delivered or produced in 
large quantities they do not need to be manufactured individually. The control of material flow can be improved. 

STANDARDS – A DEFINITION 
For a given problem, even if limited to feasible solutions only, the number of applicable or possible solutions can be large. 
Based  on this domain of solutions standards  impose certain  constraints with the objective to limit  the solution domain. 
Constraints can 

• either be placed on certain aspects, 
• can exclude some solutions completely
• or can allow certain solutions only.

Generally speaking, aspects can be anything that concerns the problem at hand and that influences the result. Constraints 
limit the parameter space for aspects. This limitation is performed using mathematical operations like value assignments, or 
solving equations. As an example the class rules defining certain requirements regarding stiffener dimensions in relation to 
plate  thickness  can  be  named.  Description  logic  allows  the  definition  of  relationships  between  different  aspects  hence 
forming a network of rules for a given standard (Piera 2003).

Here, a distinction between 



• constraints that only affect aspects of the standardized object
• and relations that also encompass information from the surroundings of the object, the design context

needs to be made.

As  an  example  in  Figure  2, a  bracket  for  a  stiffener-stiffener  connection  is  shown.  Looking  only  at  direct  first-order 
relationships, the length of the flange l and the thickness of the bracket t are properties of the object alone. The selection of 
the bracket also requires information of other objects. In this example the section module of the profiles to be connected 
needs to be known. These can be derived from the type of connected stiffeners and the stiffener dimensions. 

In addition to these strict constraints descriptive constraints can be imposed. Descriptive constraints are constraints that are 
complex to state explicitly in terms of equations or boolean expressions but are provided as e. g. explanatory text. Often, this 
type of constraints requires complex information about the location in the ship, strength and fatigue levels, manufacturing 
procedures as well as additional information normally not given in the data model. In detailed structural design the selection 
of the best solution from a list of permissible solutions is heavily influenced by weak information. 

Here, the knowledge of the engineer is required to evaluate the information provided with respect to the problem at hand and 
to decide if a specific weak constraint is applicable or not. The possibility of misunderstandings is given.

Figure 2: Local and Context Related Aspects

In practice the number of aspects applied for a given standard is limited by issues like maintenance, complexity and the 
availability of information. Therefore, solutions that are applied often in a typical design scenario or solutions with high error 
rates and high costs for correction are candidates for standardization. Also, from an economic point of view standardization is 
only used if the effect of standardization gives substantial benefits regarding cost or quality compared to the effort needed to 
define,  document,  distribute  and  apply  these  standards.  For  a  standards  database  the  cost  involved  in  defining  certain 
information explicitly within the data model or in a separate application needs to be taken into account, too.

Therefore,  in ship design standardization is mostly applied in the area of steel structural  design. Here,  high numbers of 
identical solutions like parts or features are used. The identification of all relevant aspects determining the decision for or 
against a specific solution is feasible yet  complex. An opt-out option for uncommon problems with special requirements 
needs to be provided to allow the engineer to overrule the solution given by a standard (Nieuwenhuis et. al).

DESIGN ACTIVITIES
In the design process different design activities are executed. Each design activity depends on the results of other activities; 
design  activities  might  be executed  sequentially  or  in  parallel.  Design  activities  can  be described  at  different  levels  of 
granularity. Following Hubka the generic notion of design activity can be defined as follows (Hubka 1993):

Definition:  A  design  activity  is  a  change  of  the  state  of  information  by  means  of  a  design  method based  on  
knowledge of the designer or any other acting entity and the context of the evolving design.

From the knowledge level design activities can be described by goals, actions and knowledge as shown in Figure 3. The input 
and output of the design activity can be expressed as knowledge. The scope and focus of the input knowledge IK is influenced 
by the perception of the design context and the general understanding of the problem domain. A design goal GD is derived 
from the general requirements, the global objective. Often, conflicting goals needs to be addressed. As a problem formulation 
is  often  goal  driven  the  goal  influences  the  selection  of  an  applicable  solution  algorithm  or  design  activity  AD.  The 
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formulation of the design activity without taking the solution into account is not possible. As output, the design activity 
creates  additional  output  knowledge  OD unknown  before.  If  no  valid  or  suitable  solutions  were  developed  the  output 
knowledge is used to adapt the goal of the design activity. A new internal iteration may be started. 

AD OD

GD

ID

Figure 3: Formalism for a Design Activity

The output may prompt another design activity. The first design activity hereby servers as provider of input knowledge for 
consequent activities. Constraints are created for further development steps. Often, a design goal may cause several design 
activities to be executed in sequence or in parallel. The process terminates when the global objective is reached or no more 
actions can be performed with the knowledge available. 

As shown by Sim (Sim 2003) design activities can be classified according to the objective aspired. Three different groups 
with the activities as shown in Table 1can be identified.

Table 1:  Classification of Design Activities
Type Objective Action
definition function to form/structure sythesising,  abstracting,  generating,  decomposing. 

associating,  comprising,  structuring  or  integrating, 
detailing, defining, standardizing

evaluation form/structure to behavior/effects decision  making,  evaluating,  selecting,  analyzing, 
modeling, simulating, testing or experimenting

management constraining,  exploring,  identifying,  information, 
gathering,  resolving,  searching,  decomposing, 
prioritizing, planning, scheduling

The first category classifies different approaches an engineer might take to reformulate a given design problem so that a 
potential design solution can be reached. From functional requirements the form or structure of the product is derived. The 
complexity  of  the  evolving  design  is  managed  until  a  solution  has  been  reached.  Once  potential  (intermediate)  design 
solutions  are  derived evaluation activities  are  performed  to  validate  that  a  solution satisfies  the requirements.  Also,  by 
discarding infeasible solutions the design solution space is reduced. Two different approaches to this task are possible. On the 
one hand, a problem focused concentrates initially on the analysis of the problem followed by a systematic concretization and 
definition process. On the other hand, with a product-focused approach assumptions about possible solutions are made. These 
are used to gain further insight into the problem and to refine the proposal. Design activities are related to each other. For this 
purpose management tasks are required. Using strategic considerations the design process, i. e. the coordination of design 
activities, can be influenced influenced. 

The design definition activities can be arranged according to how concrete the model is and the level of detail. The activity of 
generating is supported by decomposing known solutions, associating ideas or concepts and composing them into design 
concepts.  The  detailing level  of  feasible  yet  undetailed  solutions  becomes  detailed  and  concrete  through  activities  like 
defining, detailing or standardizing. Entities of a domain are configured to construct a reliable structure that satisfies the 
design requirements. This activity involves search, exploration and discovery of design solutions. These partial solutions are 
integrated and compositioned into the global model.

CONFIGURATION DESIGN
In the domain of engineering the design process can be defined as goal-oriented search. In most cases, a process of successive 
design refinements is used. A top-down approach is applied. In each iteration loop, requirements are identified and tested; 
design  decisions  are  made.  The  form of  components  and  their  fit  is  evaluated.  Functional  and  behavioral  aspects  are 



considered.  The working principle is  adhered  to.  If  a  pre-defined set  of  components  is  given  and assembly of  selected 
components is sought that satisfies a set of requirements and adheres to a set of constraints, this search strategy is defined as 
configuration design (Wielinga 1997). 

Definition: Configuration design is a goal-oriented problem solving process. The arrangement of a set of known 
objects based on given functional, geometrical and other requirements is determined. 

A component can be a physical entity, an activity etc. An optimality criterion or cost function can be applied to sort possible 
results. According to Wielinga, the classification with respect to configuration design as shown in Table 2 can be given. 
Based on this classification examples of real-world configuration problem types are identified in Table 3.

Table 2: Classification of Configuration Design
Components Assembly Requirements and Constraints
Fixed Set Fixed Local & directly applicable
Parameterized fixed set skeleton incrementally applicable
parameterized set of types free functional or global

Table 3: Examples for Configuration Design
Task Category Components Assembly Constraints & Requirement
Assignment Fixed Set Skeleton Incremental
Layout, Scheduling Fixed Set Free -
Parametric Design Parametric Set Fixed -
Skeleton Design Parametric Types Skeleton -

If the set of components is determined entirely in advance, i. e. all  properties relevant for the design task are fixed and 
known, a combinatorial problem needs to be solved. The arrangement of the component needs to be determined to satisfy all 
requirements and to fulfill  all  constraints. A parameterized set is given if  the parameters and the general  shape of each 
component is known yet the parameter values for one or more parameters can be chosen by the solution. In the field of naval  
architecture e. g. stiffeners in stock can be described as parameterized set in so far as for each stiffener the contour is defined 
by the material in stock, yet the length depends on the manufacturing process. Finally, a parameterized set of types is an 
abstraction  of  the  previous class.  For  each  type  of  component  multi-dimensional  parameters  are  present.  If  a  complete 
bulkhead e. g. is given as a type, not only the dimensions of the stiffeners applied can be chosen but also the number of the 
stiffeners itself. Therefore, for a parameterized set of types the final generic shape is not given.

A second source of variant is defined by the relations that define the assembly, i. e. the arrangement of the components. If the 
arrangement is known complete the configuration design task is reduced to the selection and assignment of parameter values 
for the components of the arrangement.  A less restrictive case is given if the skeleton of the arrangement is given. The 
specific arrangement has to be determined for the solution. The most flexible and most complex case is a free assembly. The 
arrangement of the components can be chosen by the design task as long as constraints and requirements are not violated.  

Requirements or constraints can be directly applicable, i. e. they restrict or define the value of an individual parameter of a 
component  directly.  Incremental  constraints  are  constraints  that  act  on  parameters  derived  from  a  combination  of 
components. The evaluation of such constraints is only possible if a sufficiently detailed model is already generated. For a 
functional  requirement  some  relation  between  an  arrangement  and  the  functional  characteristic  of  this  arrangement  is 
evaluated. The explicit definition of the relation is required. 

KNOWLEDGE-BASED DESIGN ACTIVITIES 

As shown above the design process in detailed steel structural design can be classified as configuration design activity. From 
a set of known components suitable solutions are selected and evaluated. The context for the problem at hand is analyzed. 
Based on this knowledge an optimal solution is selected from the set of suitable solutions.

Two different usage scenarios can be distinguished:

• Execution of a self-contained design activity. E. g. the definition of a single bracket for a given problem at hand is a 
self-contained design activity. No further knowledge about previous or following design activities is required.

• Control of the design workflow, i. e. the execution order of a sequence of design activities. E. g, the design of a 
complete  standardized  floor  plate  arrangement  can  be  identified  as  an ordered  execution  of  subsequent  design 



activities. Each design activity is responsible for a single design action. The selection of suitable design activities as 
well as the execution order depends on the problem to solve. The design context plays an important role hereby.

The results presented use a rule based approach. Information about the steel structure to refine is based on a Tribon Steel 
product data model. A so called production rule system uses rules that work on facts, the so called working memory. Each 
rule consists of a precondition and the action to take if the precondition is met. 

WHEN
 Plate Thickness > 20 mm
THEN

Use X-Welds

Multiple checks can be present in the precondition. The action part can contain multiple actions. The working memory can be 
modified by an action. Based on the current state of the working memory, i. e. the facts given, adequate rules are executed. 
This process continues as long as there are rules left to call.

In  the  prototype  application,  each  design  activity  is  formulated  using  a  set  of  rules.  These  rules  capture  the  design 
requirements and constraints as preconditions. The design intent is expressed in the action part of the rule. For the working 
memory two different types of facts are defined, namely:

• the set of standard components,
• the product model for the design problem.

For the representation of the standard components, the modeling approach chosen reuses constructs presented in the ISO 
10303 STEP standard.  As Tribon provides XML schema definitions for the exchange of steel structural  data, constructs 
defined in the Tribon XML schemas for data exchange are taken up and modified. A class hierarchy as shown in Figure 4 is 
defined and represents the graph structure of the dependencies. Important parameters – e. g. the cross section of a stiffener 
type etc.  – are defined. For each class of components the set of valid instances is defined. Parameters values are assigned for 
each instance.  Relations between different  instances  can be modeled. E. g.,  based on the STEP specification, functional 
aspects can be expressed.  

The  standard  components  are  modeled  using  the  web  ontology  language  OWL.  Defined  by  the  World  Wide  Web 
Consortium,  OWL  denotes  a  family  of  knowledge  representation  languages  for  the  definition  of  ontologies.  Main 
considerations for the selection of this language were as follows:

• Expressibility: OWL supports all common modeling constructs used for data model design. Type hierarchies can be 
defined.  Inheritance  is  supported.  Data  type  properties  allow assigning  specific  values  for  certain  aspects  of  a 
components. With object properties links between different component items can be defined.

• Reasoning: As OWL is based on first order description logics, support for automatic inference is available. This 
allows for semi-automated consistency checks of the data model developed. Inconsistencies can be detected. For the 
instance data constraints to fulfill can be defined and validated.

• Tool and Community Support: With open-source libraries like JENA for the programmatic access to the data, the 
integration of OWL data models into applications is easy. An extensive community and multiple vendors working 
with OWL provide a wealth of information. 

• Editing: Powerful editing environments for the definition and management of class structures. In contrast to e. g. 
relational  databases  or  STEP databases  direct  editing of  instance  data  is  supported.  The  definition of  relations 
between instance objects, i. e. a definition of a graph-oriented network, can be performed comfortably.

The system uses a task specific data model representing the steel structural model. This model is based on the Tribon M3 
XML model for steel structural design A task specific and hence simplified data model was chosen, as a full featured data 
model  like  STEP AP218 or  the Enterprise  Reference  Model  from Atlantec  would lead  to  a  significant  increase  of  the 
complexity for the rule formulations used. 

The data provided by the XML data model is imported into OWL and hence simplified. E. g. detailed definitions of the 
geometry of the boundary are removed. Geometric  operations are used to determine the topology of the steel  structure. 
Intersections  of  structural  members  are  derived.  For  this  purpose  multiple  transformation  steps  are  defined  using  the 
SPARQL query and data transformation language. As a result a custom topological model with only the information required 
is created. 



A direct interaction with the product data model present in Tribon M3 is currently developed. Based on the Data Extraction 
Utilities and the Vitesse Framework provided by the Tribon system a custom API is created. This API allows the transparent 
interaction with the relevant geometrical,  topological  and functional aspects of the model. For each object in the model 
functional aspects can be retrieved using a top-down approach. Using Component Object Model Techniques (COM) the API 
can be accessed from any application and can hence be used as data provider for the rule system.

Figure 4: Class hierarchy for the Bracket Definition

The system is based on the open-source rule based system Drools. Drools is a high-performance production rule system 
written in Java that supports forward chaining i. e. input driven reasoning. Advanced features like custom rule execution 
ordering  and  the  specific  activation  of  selected  groups  of  rules  are  supported.  Based  on  the  selected  design  task  the 
corresponding rule definitions are activated, see Figure 5. The working memory is populated. The component database and 
the steel structural model are loaded. For this purpose the information available in OWL syntax is automatically transformed 
into JAVA objects and stored into an object oriented database. As database DB4o is used. An object oriented database was 
selected as this provides means for a transparent access to the objects stored in the database. Other means for data storage like 
hibernate etc. could be implemented.

Tribon XML

Rule Engine
Drools

OWL

DB4o

OWL

Sparql

Steel Structure

Standards

Figure 5: Data Preparation for the Rule Engine´



STANDARD COMPLIANT DESIGN ACTIVITIES

As an example for the rule based implementation of an atomic design activity the standards compliant and context sensitive 
selection of a bracket is shown. Here, the bracket acts as connection element between a plate and an intersecting stiffener. 

The list of standardized bracket types and instances are taken from a recent project of a major German shipyard.  The context, 
i. e. the determination of external parameters that have an influence on the design result, were identified in close cooperation 
with engineers on the shipyard. These are:

• The orientation of the profile
• The dimensions of the profile and it’s cross section
• The overall load and strength requirements
• Space constraints

An unambiguous assignment of valid bracket sizes to the size of the profile is given in the standards database

For selected sections of the vessel the final steel model was analyzed. A statistical breakdown of the bracket types used in 
these sections is shown in Table 4. Three different bracket types – namely KL, BCW and BCB – are mainly used. For the 
bracket type KL flanged (KLK) and unflanged (KL) brackets are used.

Table 4:  Statistical Breakdown of Bracket Types
Type KL KL 

(flanged)
BCW BCB Other (6 Types)

Number 95 60 51 37 56

From a standpoint of standardization only the bracket types KL, KL with flange, BCW and BCB are relevant. The other types 
are used sparsely. The implementation of a design solution for the latter types is neither economically sensible, see above, nor 
technical feasible. The later instances are only used for special cases. 

Based on an initialized working memory the profile-plate-intersection for which a bracket should be defined, is selected by 
the user. For this problem the context is determined and suitable brackets are selected from the standards database.  A scoring 
algorithm is applied to find a solution with optimal performance. In case that multiple candidates found, a manual interaction 
is required to select the best solution. Finally, the bracket is defined for the location selected . The working memory is reset i. 
e. all temporary variables are set to an initial state. The next design problem can now be identified and solved

Auxiliary Parameters in the Data Model
For the selection of suitable i. e. valid brackets additional parameters are introduced, namely:

• Activity (Steel Model):  The activity parameter defines whether an object in the structural model is active, involved 
or inactive.  For the example of a bracket-definition, the stiffener and the plate for which the bracket should be 
defined are active.  If  a part  influences  the design process developed for the active parts this part  is marked as 
involved by the rule system. E. g. neighboring stiffeners could have an effect on the result of a design activity.  By 
default all objects in the working memory are set to inactive.

• Performance  Score (Standards  Components):  The performance  score  is  a  compound parameter.  Mandatory and 
optional performance parameters are distinguished.  If  a mandatory performance parameter,  e. g.  with respect  to 
strength requirements,  is  not  met,  this standard component is  ignored for the current  design problem. Optional 
performance parameters are used to evaluate the performance of a design solution with respect to soft constraints. 
Manufacturing costs, ease of installation or the exploration of series effects can be named. Different weight factors 
can be assigned to each optional performance parameter. 

Bracket Selection & Evaluation
As an unambiguous assignment of bracket instances to profile types and dimensions exists, all non fitting brackets are sorted 
out:

WHEN
$profile : Profile (activity == active)
$bracket: Bracket(validFor not $profile)

THEN
$bracket.setValidity(invalid)



In the conditional clause the active profile is selected from the data model. A temporary variable $profile with rule scope is 
created. In the second line it is tested whether the standards definition is not applicable for the active profile. If both tests are 
true, the consequence is executed. The bracket instance is marked as invalid and is not used in other rules.

For a single profile type and it’s dimensions in most cases flanged and normal brackets can be used. If space restrictions are 
present, the flanged solution is preferable. Otherwise, due to lower manufacturing costs, the unflanged bracket type is used. 
Here, SpaceManager is a knowledge component where space requirements, the functional aspects of certain rooms etc. are 
defined. Currently, this is defined as an external component where all relevant information is entered manually. In the future 
an integration into the product data model of the CAD system used can ease data management and facilitate the use of this 
knowledge. 

WHEN
$profile: Profile(activity == active)
$plate: Plate(activity == active)
$bracket: Bracket(validity not invalid; hasFlange == false)
SpaceManager.isRestrictedStrict($profile, $plate) 

THEN
$bracket.setValidity(invalid)

If a strict space requirement for the combination of plate, profile is given, all unflanged brackets are marked as invalid, see 
the first rule below. In contrast, a soft constraint  defines a preference for a flanged solution. The scoring of the flanged 
proposed solutions is increased. The score for unflanged candidates is decreased.

WHEN
$profile: Profile(activity == active)
$plate: Plate(activity == active)
$bracket: Bracket(validity not invalid; hasFlange == true)
SpaceManager.isRestrictedSoft ($profile, $plate) 

THEN
$bracket.updateScore(space, 1)

WHEN
$profile: Profile(activity == active)
$plate: Plate(activity == active)
$bracket: Bracket(validity not invalid; hasFlange == false)
SpaceManager.isRestrictedSoft ($profile, $plate) 

THEN
$bracket..updateScore(space, 0)

Based on these and other rules not shown a context sensitive configuration of appropriate brackets can be identified. The 
selection of  a solution with optimal performance is performed as follows:

WHEN
$bracketA: Bracket(validity == valid)
$bracketB: Bracket(validity == valid)
$bracketA.getScore() > $bracketB.getScore()

THEN
$bracketA.setSelected(true)
$bracketB.setSelected(false)

If a valid bracket has a higher score than another valid bracket candidate from the working memory, this bracket is marked as 
selected. The bracket with a lower scoring level is marked as not selected. This rule is called repeatedly until all possible 
configurations are tested and hence the optimal solution is found. In case of multiple solutions with identical performance 
scores the user is asked for a selection. Using similar approach different rating criteria could be implemented. 

Bracket Definition
The definition, i. e. the placement of the suitable bracket found is currently performed in the knowledge model only. An 



instance of the bracket solution is created for the current problem domain and added to the working memory. The type of the 
solution is passed as argument. 

WHEN
$bracket: Bracket(selected == true)
$profile: Profile(activity == active)
$plate: Plate(activity == active) 

THEN
$bracketInstance($bracket)
$profile.connectedTo($bracketInstance)
$plate.connectedTo($bracketInstance)

Depending on the angle between plate and profile either an inline placement or an attached placement is used, see Figure 6. It 
is tested whether the bracket supports the placement preferred. 

                                  
Figure 6: Inline or attached placement of Brackets

The following rule shows the treatment of a bracket that supports attached placements.

WHEN
$profile: Profile(activity == active)
$plate: Plate(activity == active) 
$bracketInstance: BracketInstance()
$angle: GeoTool.getAngle($plate, $bracket)
$angle < 90
$bracket.supportsPlacement(attached)

THEN
$bracket.setPlacement(attached)

As the scope of the research is placed on the evaluation of rule based methods for the determination of solutions, no direct  
interaction with the Tribon CAD system is given. A manual transfer of the solution achieved is required. In the future it is 
planned to extend the API mentioned above. With this approach a fully automatic definition of brackets etc. using a rule 
based approach can be achieved.

Reset
Finally, the complete working memory is reset. All temporary value like activity and selection parameters are set to the initial 
state. The scoring compound parameter is cleared.

WHEN
$bracket: Bracket()

THEN
$bracket.setSelected(false)
$bracket.SetActivity(inactive)
$bracket.resetScoring()



DESIGN PATTERN

Design patterns are focused on the consequent execution of multiple design sequences. Two different types of design patterns 
can be distinguished, namely:

• the multiple execution of a single design pattern
• the execution of a sequence of different design patterns.

Multiple Execution
For the first case, the bracket definition as shown in the previous chapter is extended. The problem to work on, i. e. the 
profile and plate to evaluate, are selected automatically. An iterative approach allows for the fully automatic definition of all 
brackets within the knowledge model, see Figure 7. 

Select
Stiffener & Plate

Bracket DefinitionBracket Selection

Valid?

Yes

No

Repeat

Start End

Figure 7: Automatic Definition of Multiple Brackets

In  a first  step possible locations for bracket  placements are determined. Two intersection profile and plate elements are 
identified and activated.

WHEN
$bracket: BracketInstance()
$profile: Profile()
$plate: Plate()
$plate.intersectsWith($profile)

THEN
$profile.setActivity(active)
$plate.setActivity(active)

This configuration is evaluated. Yard standards – e. g. every second stiffener is connected to a plate with a bracket – are 
adhered. In the example below strength considerations, if applicable, are evaluated using a rule based sub module called via 
the StrengthManager component. In this component a subset of the GL class rules is modeled. A global stress and load model 
of the ship structure can be accessed if present. If no action is required the next configuration is tested.

WHEN
$profile: Profile(Activity = active)
$plate: Plate(Activity = active)
Not StrengthManager.needsBracket($profile, $plate)

THEN
Reset & continue
 

WHEN
$profile: Profile(Activity = active)
$plate: Plate(Activity = active)
StrengthManager.needsBracket($profile, $plate)

THEN
Continue with Bracket Selection

With  this  approach  the  atomic  design  entity  “bracket  selection  and  definition”  is  performed  repeatedly.  A consecutive 



placement of all brackets in an activated domain is performed. 

Complex Design Patterns
Using the design  activities  shown exemplary above,  complex  design  patterns  connect  the  execution of  different  design 
patterns. E. g. in  Figure 8 the definition of details for a floor plate structure is shown. Based on the basic steel structure, 
information about strength and stress requirements as well as knowledge about the function of the compartments separated by 
the floor plates, different design activities are selected and executed. 

Cutouts & Clips EndCorner 
Cutouts

Buckling Stiffeners

Full?

HolesNo

Yes

Weld 
NotchesStart

Figure 8: Complex Design Pattern for a Floor Plate

Depending on the room configuration either a full watertight floor plate structure is defined. Also, yard and class society 
regulations are taken into account. E. g. the regulation that every third floor plate should be designed as full floor plate 
structure is regarded. For each floor plate, cutouts are defined for intersection stiffeners. For watertight tank walls adequate 
clips are selected. The connection of the stiffeners to the plate structure is defined so that an adequate cross section for load 
transfer is given. For lightweight floor plate structures holes are defined according to the yard standards. The distance from 
the edge of the hole to the edge of the plate is controlled. The corner radius is determined. For full floor plates buckling 
stiffeners are defined on the plate. Corner cutouts as well as cutouts over weld seams are defined.

As a result for a standardized context the detailed design of a floor plate structure is performed automatically. In case of 
ambiguities the expertise of the user is asked for. 

CONCLUSIONS

A knowledge-based approach to detailed steel structural design can be used for quality controlled semi automatic design. The 
workload of the engineer is eased. More time can be spent on innovative work. Series effects can be explored. The use of 
solutions with optimal performance can be achieved. As shown in the previous sections the layered, bottom-up approach 
allows the reuse of individual  design activities as different  levels of complexity.  Depending on design problem given a 
suitable level of automation can be chosen. 

Today,  integration  with  existing  CAD  systems  is  time  intensive  and  requires  a  good  understanding  of  programming 
techniques. Often, different data sources like a global strength model, compartmentation plans etc. are not connected. Data 
integration needs to be performed manually.  A more integrative approach would help to reuse the knowledge inherent in 
these information sources throughout the complete design process. Changes could automatically be propagated throughout 
the product model.

Knowledge acquisition and knowledge explication are difficult. Often, existing yard standards or class regulations are not 
formulated clearly. Dependencies on the context are not always given. A formulation of a standard that is suitable for the 
implementation of a rule based system can be difficult to obtain as the naval engineer lack the relevant understanding of such 
systems. The unambiguous definition of the design activities has proven to be a problem. An adaption of existing knowledge 
based engineering standards to changing requirements on the shipyard is therefore cost and time intensive. 
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